
Journal of Statistical Physics, Vol. 122, No. 2, January 2006 ( C© 2006 )
DOI: 10.1007/s10955-005-8014-x

Existence and Uniqueness of Stationary Solutions for
3D Navier–Stokes System with Small Random Forcing
via Stochastic Cascades

Yuri Bakhtin1,2

Received September 25, 2004; accepted August 10, 2005

We consider the 3D Navier–Stokes system in the Fourier space with regular forcing
given by a stationary in time stochastic process satisfying a smallness condition. We
explicitly construct a stationary solution of the system and prove a uniqueness theorem
for this solution in the class of functions with Fourier transform majorized by a certain
function h. Moreover we prove the following “one force—one solution” principle: the
unique stationary solution at time t is presented as a functional of the realization of the
forcing in the past up to t. Our explicit construction of the solution is based upon the
stochastic cascade representation.

KEY WORDS: Navier–Stokes system; Stationary solution; Stochastic cascades; “One
force–one solution” Principle.

1. INTRODUCTION: MAIN RESULT

The aim of this note is to prove an existence and uniqueness theorem for stationary
solutions of randomly forced Navier–Stokes system on the 3D-torus T

3 = R
3/Z

3

and on R
3 with the help of the stochastic cascade representation of solutions

introduced in (16) and developed in (1). Results on existence and uniqueness of
stationary solutions to randomly and stochastically forced Navier–Stokes system
in 2D can be found in(3,4,6−9,11−14,16). Existence-uniqueness theorems for station-
ary solutions of the Navier–Stokes system in 3D bounded domains are proved
in (11) and (5). Our approach is completely different from that of (5,11). Using the
techniques of (16) we construct an explicit representation of the stationary solution
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as a functional of the forcing realization in the past. There is a fixed point argument
hidden behind our method, so a smallness assumption on the forcing is essential;
it imposes a limitation on applicability of the approach. In particular, we prove
existence and uniqueness of a stationary solution only in the class of functions
majorized by a certain function h. However the solutions we construct belong to
the Le Jan–Sznitman class and may have infinite energy, so that our new result is
not covered by the results cited above.

In this section we introduce necessary notation and state an existence-
uniqueness result for the Cauchy problem from (1) as well as our new result for
stationary solutions. In Section 2 we describe our main tool, stochastic cascades,
and prove the main result.

We consider the Cauchy problem for the Navier–Stokes system on G = T
3

or R
3:

∂u(x, t)

∂t
+ 〈u,∇〉u(x, t) = ν�u(x, t) − ∇ p(x, t) + g(x, t), (1)

〈∇, u〉 = 0, (2)

u(x, t0) = u0(x). (3)

Here x ∈ G, and u(x, t) ∈ R
3 is a divergence-free velocity field for each

time t ∈ [t0,∞). Angular brackets denote the Euclidean inner product, ∇ is the
gradient operator, � is the Laplacian, ν > 0 is the viscosity, p : G → R is the
pressure and g : G × [t0,∞) → R

3 is the external forcing.
We shall assume that the initial data u0 and the force g are divergence-free

and zero mean: ∫
G

u0(x)dx = 0,

∫
G

g(x, t)dx = 0, t � t0.

Let us rewrite the Navier–Stokes system (1)—(3) in the Fourier space and get rid
of the pressure term. Consider the case G = T

3 first:

∂ û(k, t)

∂t
= −4π2ν|k|2û(k, t) − 2π i Pk⊥

∑
l1+l2=k

〈k, û(l1, t)〉̂u(l2, t)

+ ĝ(k, t), k 	= 0, (4)

û(0, t) = 0.

Here u(x, t) = ∑
k∈Z3 û(k, t)e2π i〈k,x〉, g(x, t) = ∑

k∈Z3 ĝ(k, t)e2π i〈k,x〉, and Pk⊥ is
the orthogonal projection along the vector ek = k

|k| which corresponds to the
projection on the space of divergence-free vector fields since the condition of zero
divergence is expressed in the Fourier space as 〈̂u(k, t), k〉 = 0 for all t and k.

We introduce a new function χ (k, t) via

û(k, t) = h(k)χ (k, t), (5)
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where h : Z
3 → R+ is a normalizing function such that h(k) > 0 for k 	= 0 and

h(0) = 0. The solutions we are going to construct will satisfy |u(k, t)| � h(k). In
particular, h will determine the behaviour of u(k, t) at infinity. Further restrictions
on h will be given in Theorems 1 and 2 and discussed in Section 2.

At this point we rewrite Eq. (4) as:

χ (k, t) = e−4π2ν(t−t0)|k|2χ (k, t0)

+1

2

∫ t−t0

0
4π2ν|k|2e−4π2ν|k|2sm(k)Pk⊥

∑
l1+l2=k

〈ek, χ (l1, t − s)〉

χ (l2, t − s)H (k, l1, l2)ds

+1

2

∫ t−t0

0
4π2ν|k|2e−4π2ν|k|2sϕ(k, t − s)ds, k 	= 0. (6)

Here

m(k) = −4π ih ∗ h(k)

ν|k|h(k)
, H (k, l1, l2) = h(l1)h(l2)

h ∗ h(k)
, ϕ(k, t) = 2ĝ(k, t)

ν|k|2h(k)
(7)

where h ∗ h(k) = ∑
l1+l2=k h(l1)h(l2).

When G = R
3 an analogous equation for the Fourier transform of u given by

û(k) = (2π )−3/2
∫

R3

e−i〈k,x〉u(x)dx

is

χ (k, t) = e−ν(t−t0)|k|2χ (k, t0)

+1

2

∫ t−t0

0
ν|k|2e−ν|k|2sm(k)Pk⊥

∫
R3

〈ek, χ (l, t − s)〉χ (k − l, t − s)H (k, l)dlds

+1

2

∫ t−t0

0
ν|k|2e−ν|k|2sϕ(k, t − s)ds, k 	= 0, (8)

where now

m(k) = − 2ih ∗ h(k)

ν(2π )3/2|k|h(k)
, H (k, l) = h(l)h(k − l)

h ∗ h(k)
, ϕ(k, t) = 2ĝ(k, t)

ν|k|2h(k)

and h ∗ h(k) = ∫
R3 h(l)h(k − l)dl for a function h : R

3 → R+ such that h(k) > 0
for k 	= 0 and h(0) = 0. The function h will majorize the solution u thus deter-
mining its behaviour at zero and infinity. The function χ in (8) is a transformation
of u defined by (5).

The following result was proved in (1) and (16):
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Theorem 1. Let G = T
3 (respectively, R

3). Suppose |m(k)| � 1, |χ (k, t0)| � 1
for all k and |ϕ(k, t)| � 1 for all k and t ∈ [t0, t1]. Then there exists a solution of
(6) (respectively, (8)) on [t0, t1] with initial data χ (·, t0). This solution χ satisfies
|χ (k, t)| � 1 for all k and t ∈ [t0, t1]. It is unique in the space of functions bounded
by 1 and defined on Z

3 × [t0, t1] (respectively, R
3 × [t0, t1]).

Corollary 1. Suppose |m(k)| � 1, |̂u(k, t0)| � h(k), |̂g(k, t)| � ν|k|2h(k)/2 for
all k and t. Then there is a unique solution û(k, t) of the Cauchy problem such that
|̂u(k, t)| � h(·).

Remark 1. The condition on |m(·)| is fulfilled iff 4πh ∗ h(k) � ν|k|h(k) for T
3

and 2h ∗ h(k) � ν(2π )3/2|k|h(k) for R
3. A possible choice of h(·) for both cases

is

h(k) = Cα,β

e−α|k|β

|k|2−β
,

with α > 0, 0 � β � 1 and sufficiently small Cα,β . In particular, as k → ∞ the
solutions decay like |k|−2 when β = 0 and like e−α|k| when β = 1, see (1,16).

The main new result of this paper is concerned with the case of the external
forcing given by a stochastic process. Now ϕ(k, t) = ϕ(k, t, ω) where ω is an
element of a probability space (
,F , P).

Theorem 2. Let G = T
3 (respectively, R

3). Suppose |m(k)| � 1 for all k 	= 0,
and the external forcing ϕ is a stationary process taking values in the space of
functions defined on Z

3 (respectively, R
3) and bounded by 1: |ϕ(k, t)| � 1 for all k

and t. Then there exist a solution of (6) (respectively, (8)) defined for t ∈ R which
is a stationary process. This stationary solution χ satisfies |χ (k, t)| � 1 for all k
and t. It is the only solution of (6) defined for all t ∈ R with this property.

The following “one force — one solution” principle holds: There ex-
ists a functional � of forcing realizations on R− = (−∞, 0] such that the
unique stationary solution χ is given by χ (·, t) = �(πtϕ) where πtϕ defined
by πtϕ(·, s) = ϕ(·, t + s), s ∈ R− is the history of the forcing ϕ up to time t shifted
to R−.

Corollary 2. Suppose |m(k)| � 1 for all k 	= 0. Let the forcing g be a stationary
in time process with |̂g(k, t)| � ν|k|2h(k)/2. Then there exists a unique stationary
solution to the Navier–Stokes system satisfying |̂u(k, t)| � h(k), k 	= 0.

Remark 2. In particular this result is applicable if the force is constant with
respect to time. Thus, one obtains an existence-uniqueness theorem for steady
state of the Navier–Stokes system.
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Since the construction of the functional � will be based on the notion of
stochastic cascade which played the central role in the proof of Theorem 1
in (1) and (16), we start the next section with a brief discussion of stochastic
cascades.

2. STOCHASTIC CASCADES AND PROOF OF THEOREM 2

The proof will be given only for the case G = T
3. The case G = R

3 is treated
in the same way.

The basic notion of this section is that of stochastic cascade. To introduce it
we need some notation. Let

V =
∞⋃
j=0

{1, 2} j = {θ, (1), (2), (1, 1), . . .}

be a complete binary tree rooted at θ , where {1, 2}0 = {θ}.
For v = (v1, v2, . . . , vm) ∈ V and 1 � n � m denote v|n = (v1, v2, . . . , vn)

andv|0 = θ. The concatenation (v1, . . . , vm, u1, . . . , un) of v = (v1, v2, . . . , vm) ∈
V and u = (u1, v2, . . . , un) ∈ V is denoted by (v, u).

For a finite subtree W of V rooted at θ we define ∂W to be the set of all leaves
of W, where a leaf is a vertex of W with no children in W.

Informally, the stochastic cascade we need can be described as a branching
random walk. A single particle corresponding to the root θ of V is placed at a point
(k, t) ∈ Z

3 × R and then the process takes place in the reverse time. The particle
waits an exponentially distributed length of time Sθ with parameter 4π2ν|k|2 and
then, at time t − Sθ an independent coin κθ is tossed and either with probability
1/2 the event {κθ = 0} occurs and the particle dies, or with probability 1/2 one
has {κθ = 1} and the particle branches into two particles which are placed at
(l1, t − Sθ ) and (l2, t − Sθ ) where the positions l1 and l2 are chosen according to
the probability distribution H (k, l1, l2) defined in (7). This procedure is repeated
independently for these new particles which correspond to vertices (1) and (2) of
a complete binary tree.

More precisely, for a given k ∈ Z
3
∗ = Z

3 \ {0} we need a stochastic process
(kv, κv, Sv)v∈V indexed by the vertices of V (or, equivalently, a corresponding
probability measure P) with the following properties:

1. P{kv ∈ Z
3
∗, κv ∈ {0, 1}, Sv ∈ R+} = 1 for all v ∈ V .

2. Random variables kθ , κθ and Sθ are independent with P{kθ = k} = 1.
P{κθ = i} = 1

2 for i = 0, 1 and P{Sθ > s} = e−4π2ν|k|2s for s � 0.
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3. Let the concatenation (v, b) of v ∈ V and b ∈ {1, 2} denote a child vertex
of v. Suppose W is a subtree of V rooted at θ and v ∈ ∂W . Then,

P{k(v,1) = l1, κ(v,1) = i1, S(v,1) � s1, k(v,2)

= l2, κ(v,2) = i2, S(v,2) � s2|FW }

= 1

4
H (kv, l1, l2)e−4π2ν|l1|2s1 e−4π2ν|l2|2s2 ,

l1, l2 ∈ Z
3
∗, i1, i2 ∈ {0, 1}, s1, s2 � 0,

where FW = σ {(kw, κw, Sw)w∈W } (the factor 1/4 is the product of two
Bernoulli probabilities 1/2).

The construction described above is called a stochastic cascade emitted from k.
Let us now introduce a deterministic functional X (k, t, (kv, κv, Sv)v∈V ,

χ0(·), ϕ(·, ·), t0) of a realization of the stochastic cascade (kv, κv, Sv)v∈V emit-
ted from kθ = k, initial data χ0, and external forcing ϕ. Define for v ∈ V

Xv =



χ0(kv), Tv � t0
ϕ(kv, Tv), Tv > t0, κv = 0
m(kv)Pk⊥

v
〈ekv

, X (v,1)〉X (v,2), Tv > t0, κv = 1
(9)

where Tv = t − Bv for v ∈ V and let

X (k, t, (kv, κv, Sv)v∈V , χ0(·), ϕ(·, ·), t0) = Xθ

.
Define τ (k, t, t0) to be the maximal subtree of V rooted at θ such that κv =

1 and t − Av � t0 for all v ∈ τ (k, t, t0) \ ∂τ (k, t, t0). In the particle language,
τ (k, t, t0) is the genealogical tree for the particles involved in the branching process
described in the beginning of this section with an additional truncation, any particle
being killed as soon as it reaches the initial time t0.

Since the tree τ (k, t, t0) can be viewed as a truncated representation of a
critical branching process (any particle has zero or two children with equal prob-
abilities, so the mean number of children is 1) it is finite with probability 1 and
one can evaluate Xθ recursively starting with the leaves of τ (k, t, t0). In fact, one
can apply the first and second lines of definition (9) to the leaves of the tree and
then apply the bottom line of the definition to each vertex that has children with
already defined values of X.

The following result is the core of the proof of Theorem 1:

Lemma 1. (see (1,16)) Under the conditions of Theorem 1,

χ (k, t) = EX (k, t, (kv, κv, Sv)v∈V , χ0(·), ϕ(·, ·), t0)



Stationary Solutions of the Navier---Stokes System 357

(the expectation is taken over realizations of the stochastic cascade) is a unique
solution of (6) with |χ (k, t)| � 1.

Proof of Theorem 2: For each realization of the random forcing ϕ, each k ∈ Z
3
∗

and t ∈ R we introduce a stochastic cascade (kv, κv, Sv)v∈V emitted from k as
described above and a functional Z analogous to (9):

Zv =
{

ϕ(kv, Tv), κv = 0,

m(kv)Pk⊥
v
〈ekv

, Z(v,1)〉Z(v,2), κv = 1,
(10)

and

Z (k, t, (kv, κv, Sv)v∈V , ϕ(·, ·)) = Zθ .

Define τ (k) as the maximal subtree of V such that κv = 1 for all v ∈ τ (k) \ ∂τ (k).
This is the genealogical tree for all particles involved in the branching process.
The tree is finite with probability 1 as a representation of a critical branching
process. One can evaluate Zθ recursively starting with the leaves of the tree τ (k).
For the leaves one can apply the first line of definition (10), and for each vertex
that has children with already defined values of Z one can apply the second line
of the definition.

Since

|m(kv)Pk⊥
v
〈ekv

, Z(v,1)〉Z(v,2)| � |m(kv)||Z(v,1)||Z(v,2)|,
iterative application of definition (10) and conditions |m(k)| � 1, |ϕ(k, t)| � 1
implies that Zθ is a product of finitely many factors each bounded by 1 in absolute
value. Hence it is bounded by 1 itself and the expectation

Eϕ Z (k, t, (kv, κv, Sv)v∈V , ϕ(·, ·))
with respect to the stochastic cascade with fixed realization of the forcing ϕ is
well-defined. Let us denote this expectation by χ (k, t) and show that it is a solution
of (6) on any time interval [t0,∞).

It is sufficient to show that

χ (k, t) = 1

2

∫ ∞

0
4π2ν|k|2e−4π2ν|k|2sm(k)Pk⊥ (11)

∑
l1+l2=k

〈ek, χ (l1, t − s)〉χ (l2, t − s)H (k, l1, l2)ds

+1

2

∫ ∞

0
4π2ν|k|2e−4π2ν|k|2sϕ(k, t − s)ds, k 	= 0.

To that end consider the following decomposition:

Eϕ Zθ = Eϕ Zθ1{κθ = 1} + Eϕ Zθ1{κθ = 0}. (12)
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Definition (10) implies

Eϕ Zθ1{κθ = 0} = 1

2

∫ ∞

0
4π2ν|k|2e−4π2ν|k|2sϕ(k, t − s)ds

so that the second term in (12) coincides with the one in (11). To treat the first
term in (12) we need an easily verified lemma concerning stochastic cascades. It
is the simplest form of the Markov property, though there are more complicated
forms of the Markov property that also hold true. Let K = (kv, κv, Sv)v∈V be
a stochastic cascade emitted from k, and u ∈ V . Then we define the “shifted”
stochastic cascade K (u) = (k̃v, κ̃v, S̃v)v∈V via

(k̃v, κ̃v, S̃v) = (k(u,v), κ(u,v), S(u,v)), v ∈ V .

Lemma 2. (Markov Property) . Stochastic cascades K (1) and K (2) are condi-
tionally independent given κθ , Sθ , k1, k2 and the conditional distribution of K (u)
is a.s. equal to the distribution of a stochastic cascade emitted from ku for u = 1, 2.

We use this lemma to obtain

Eϕ Zθ1{κθ = 1} = Eϕ[m(kθ )Pk⊥
θ
〈ekθ

, Z(1)〉Z(2)1{κθ = 1}]
= Eϕ[Eϕ[m(kθ )Pk⊥

θ
〈ekθ

, Z(1)〉Z(2)1{κθ = 1}|κθ , Sθ , k1, k2]]

= m(kθ )Eϕ[1{κθ = 1}Pk⊥
θ
〈ekθ

, Eϕ[Z(1)|κθ , Sθ , k1, k2]〉
× Eϕ[Z(2)|κθ , Sθ , k1, k2]]

= m(kθ )Eϕ[1{κθ = 1}Pk⊥
θ
〈ekθ

, χ (k1, t − Sθ )〉χ (k2, t − Sθ )]

= m(kθ )P{κθ = 1}Eϕ[Pk⊥
θ
〈ekθ

, χ (k1, t − Sθ )〉χ (k2, t − Sθ )]

which is clearly equal to the first term in (11). Therefore, χ is a solution of (11)
for all t.

Notice that functional Zθ depends only on the random tree realization and the
values of the forcing at the leaves of the tree. Since the random tree realization does
not depend on t the resulting solution χ at time t is a functional of the realization
of the forcing term ϕ in the past up to time t.

Suppose now that there is another solution γ (k, t) of (6) which is bounded
by 1 and defined for all t ∈ R. Pick a t0 ∈ R and consider γ (k, t), t � t0 as the
solution to the Cauchy problem for (6) with initial data γ (k, t0). Consider the
stochastic cascade representations of χ and γ , the latter described in Lemma 1.
Since Zθ = Xθ if d(τ (k)) < t − t0 where d(τ (k)) = sup{Bv : v ∈ τ (k)} is an a.s.-
finite random variable, we obtain

|χ (k, t) − γ (k, t)| � 2P{d(τ (k)) � t − t0} → 0 as t0 → −∞. (13)
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This implies that χ (k, t) = γ (k, t) and the theorem is proved. �

Remark 23. An estimate similar to (13) shows that if one starts with arbitrary
initial data γ (·, t0) at some time t0 then for fixed k the solution to the Cauchy
problem γ (k, t) approaches the stationary solution χ (k, t) as t → ∞. But one
cannot guarantee uniform convergence since the distribution of the lifetime d(τ (k))
of a random branching process depends heavily on the initial particle position.
The rate of decay in time of solutions in the absence of external forcing is discussed
in (2).
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